
A NOVEL APPROACH FOR TEST CASE
PRIORITIZATION USING PRIORITY LEVEL

TECHNIQUE
Arup Abhinna Acharya#1, Goutam Budha#2, Namita Panda#3

#School of Computer Engineering, KIIT University,

Bhubaneswar-751024,Orissa, India

Abstract— This paper presents a novel approach for test case
prioritization using a simple mathematical prioritization level
technique. In this we have identified a number of generic
parameters under GUI, Database, Networking heads and taken
into consideration a number of projects falling in a particular
category of projects .For each of these projects falling under a
given category, we utilize experts opinion to classify the level of
user requirement concerning the parameters and the extent to
which it has been satisfied by each of the projects, at the first
instance, on a six scale basis. The information of all the tables is
combined to generate a Project Specific Base Table (PSBT).
Whenever a new project under the same category comes up,
respective priority levels are assigned to each of these identified
parameters, i.e. we prioritize the test cases concerning the
identified parameters by utilizing the information from the PSBT
and using some mathematical calculations.

Keywords— Prioritization, Project Specific Base Table.

I. INTRODUCTION

For every software product being developed a
considerable amount of time is to be spent on testing the
product prior to its release and commercialization so that all
the latent defects in the software are eliminated and the
software behaves normally as per the expectation of the users
using or interacting with the system in question. The
reliability of software is a highly relative term with respect to
the users. It may so happen that the software developed has
got say for example five error prone functions out of a total of
ten functions and say a user X when using the software
invokes three error prone functions and let’s say other users Y
and Z invoke five error prone functions and no error prone
function respectively. In that case Y would term the software
as highly unreliable, X would term or classify the software as
slightly unreliable and Z would classify the software as highly
reliable. Thus from this example it is evident that software
reliability is a very relative term based on the number of error
prone functions being invoked. Thus while developing a
software it is highly essential to ensure that it is error free and
equally reliable for all the users interacting or using the given

software. It is essential to eliminate this concept of relative
reliability and ensure that the software behaves in an equally
reliable manner for all the users. Thus for this Software
Testing has a major role to play. Software Testing is an
important phase of quality control in Software development
and is necessary to produce highly reliable systems.
According to IEEE testing may be defined as “the process of
exercising or evaluating a system or system component by
manual or automated means to verify that it satisfies
specified requirements or to identify differences between
expected and actual results”.

In the present day scenario model-driven software
development has evolved as a new paradigm. In this approach
the developers use model based software testing for
generating test cases for those software whose foundation
rests on Object Oriented Principles. In contrast to traditional
approaches Model Based Testing as is implied by its name is
the generation of test cases and its analysis from design and
analysis models which is also termed as Grey Box approach of
testing. Since the designing phase is prior to the coding phase,
the test case generation from the design models would avoid
the blocking states which may otherwise be encountered by
the testing team of the software development team in case of
code based testing approach in which the testing phase can
begin only after the successful completion of the coding phase.
The testing and coding can be carried out simultaneously and
many problems in the design can be uncovered even before
the software is implemented. Thus this was a brief discussion
about software reliability and the importance of testing in
improving the reliability of the software. We also discussed
about the importance of Model Based Testing as a new
paradigm of software testing.

Now we turn our focus towards Prioritization of Test
Cases. The major aspect of software testing is test case
generation. To start with, a test case can be defined as a triplet
[I,S,O] , where I is the input data given to the system, S is the
state of the system in question and O is the output of the
system [1]. A test suite which is the set of all the test cases
must be optimal i.e. it must be of reasonable size and should
be able to uncover maximum errors existing in the given

Arup Abhinna Acharya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1054-1060

1054

system. Care must be taken that the test cases which constitute
a given test suite should not be redundant as a result of which
the size of the test suite becomes large with a decline in the
performance. The concept of reusability is also applicable to
the Testing phase of software development as the software
developers often save the test suite for their software so that
they can use these test suites for testing as the software
evolves in due course of time. [2] This is basically what is the
idea behind Regression Testing. Regression Testing can be
defined as the testing activity which is carried out to ensure
that no new bugs have been introduced in the software due to
some changes made in the original version of the software or
because of an attempt to fix some bugs in the software.
Running all the test cases in the test suite is of course essential
to ensure the overall reliability of the software but it is also
essential to order the test cases so that they are run according
to some given priority according to some criterion. This is test
case prioritization which schedules the test cases to maximize
some objective function. But the concept of Prioritization is
not restricted to Regression Testing alone. The following
points summarize in brief the various possible goals for
prioritization:

 To increase the code coverage in a system at a faster
rate, in the system under test so that a code coverage
criterion is met at an early stage in the process of
testing.

 To hasten their confidence regarding the reliability of
the system at a faster rate.

 To detect the high risk faults in the system at a faster
rate that too at an early stage in the testing process.

 To increase the rate of fault detection of the test suite
designed for the system under test.

The objective we have identified for the prioritization of
test cases as a motivation of our work in this paper is to
maximize the level of satisfaction of the user of the software
and also to increase the reliability of the system. In this paper
we propose an approach in which we identify certain generic
parameters based on which test cases can be designed. We
need to analyze the user requirements for a number of projects
say P1 to Pn where these projects fall in a particular category
of project say a banking project. For each of these projects we
propose to build up a table indicating the level of user
requirement and the level to which the requirement has been
satisfied by the software on the first instance of
development(i.e. as soon as the software is ready without
making an attempt to improve the achieved level of
satisfaction to near the original level of requirement) on a 6
scale basis against the identified generic testing parameters.
We then derive a common table from the above tables which
we term as PSBT i.e. Project Specific Base Table which
would indicate the overall level of user requirement on the 6
scale basis against the identified generic parameters. For a
Project Pn+1 which comes up and falls in the same category
of the project we propose to build up another table capturing
the new level of user requirement and the prioritization factor

of the test cases for each of the identified testing parameters
through some proposed mapping technique from the PSBT.
Although the approach of prioritization would be the same but
the PSBT would be different for different category of projects
and would be common for all the projects falling under a
particular category.

The rest of the paper is organized as follows. Related
Work is discussed in Section II. In Section III we present a
thorough discussion of our approach followed by Conclusion
and Future Work in Section IV.

II. RELATED WORK

Rothermel et al. [3] investigated several prioritizing
techniques such as total statement (or branch) coverage
prioritization and additional statement (or branch) coverage
prioritization that can improve the rate of fault detection.
Coverage-based TCP techniques [4, 5, 6] involve ranking test
cases based on the statement coverage they provide. Test
cases are ranked based on the number of statements
executed/covered by the test case such that the more lines of
code the test executes, the earlier in the test cycle the test is
run.

Ten coverage-based prioritization strategies [7, 4, 5, 6] are
summarized below:

 Random prioritization: As is evident from the name,
in this kind of prioritization, the ordering of test
cases for execution is random.

 Optimal prioritization: Optimal prioritization
technique is a theoretical technique that goes for
ranking the test cases based on the number of faults
they expose. In this approach it is assumed that the
program faults are given as input and this
information is used to iteratively select the test case
that exposes the largest number of faults not yet
exposed by already-selected test cases until test
cases that expose all faults have been chosen

 Total statement coverage and additional statement

coverage prioritization: In this strategy the test cases
are ranked based on the number of statements
executed or covered by the test cases in a way such
that the test case covering the maximum number of
statements would be executed first. Total statement
coverage prioritization schedules test cases based on
the total statements each test case executes and there
is a likelihood that the same set of statements being
covered by multiple test cases. On the contrary the
Additional Statement Coverage Prioritization first
selects the test case with maximum statement
coverage followed by adjusting the coverage
information on the remaining test cases to reflect the
test cases not covered by that test case and
iteratively selects a test case that provides the largest
additional statement coverage until all program

Arup Abhinna Acharya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1054-1060

1055

statements have been covered by at least one test
case.

 Total branch coverage and additional branch
coverage prioritization: The test coverage is
measured based on the program branches covered.
Branch coverage is defined as covering each
possible outcome of a condition. Additional branch
coverage bears close resemblance to additional
statement coverage except for the fact that it relies
on branch coverage instead of statement coverage.

 Total function coverage and additional function
coverage prioritization: Function coverage measures
the total number of functions covered by the test
case. This strategy bears close resemblance to total
statement coverage with a difference that it
measures coverage based on the total number of
functions executed. Similarly additional function
coverage prioritization differs from additional
statement coverage prioritization in a way that
prioritization takes place at the function level instead
of the statement level.

The Average Percentage of Faults Detected (APFD) metric

[5, 6] measures the benefits of code coverage based test case
prioritization strategies. In a case study [5] conducted at
Siemens Corporate Research Center to measure the
effectiveness of TCP in improving the rate of fault detection
and to compare different coverage-based prioritization
techniques to measure their efficiency, the researchers used
various prioritization techniques to measure the APFD values
and found statistically significant results that APFD values
were not the same for all of the techniques. The code
coverage-based TCP strategies were shown to improve the
rate of fault detection, allowing the testing team to start
debugging activities earlier in the software process and
resulting in faster software release than otherwise possible.
To talk of Requirements Traceability, Gotel and Finkelstein
define it as the ability to describe and follow the life of a
requirement from its origin to development to deployment in
an iterative way [8]. Ramesh and Jarke describe RT as a
quality attribute that is essential for a system to possess [9] in
order to have good quality. Tahat discusses traceability as a
mapping between requirements and test. If the test cases are
not associated with individual requirements it could be
difficult for testers to determine if the requirement is
adequately tested [10] or in other words it is evident that if our
test cases are associated with individual requirements the user
satisfiability test can be performed very accurately thereby
increasing the reliability of the software. Ramesh and Jarke
highlight the importance of traceability to develop the system
Compliance Verification Procedure to ensure that the system
complies with the specified requirements and that it meets the
needs of the users. [9] Srikanth et.al have proposed a value
driven approach for system-level test case prioritization called
the Prioritization of Requirements for Test (PORT). PORT

prioritizes system test cases based upon four factors:
requirements volatility, customer priority, implementation
complexity, and fault proneness of the requirements. They
have satisfied two major objectives through their proposed
methodology: improve user perceived software quality in a
cost effective way by considering potential defect severity and
(2) to improve the rate of detection of severe faults during
system level testing of new code and regression testing of
existing code. To achieve the goal of early fault detection in
the regression testing process, they have made an attempt to
prioritize the test cases by considering relevant slice of the
program, which comprises of those set of statements that
influence or have got the capability to influence the output of
a program when run on that test case. They propound a
concept that if a modification in the program has an effect on
the output of a test case in the regression test suite, it must
affect some computation in the relevant slice of the output for
that test case. J. M. Kim and A. Porter propose a test case
selection technique suitable for long run of regression testing
in constrained environments (authors mentioned their
approach as prioritization techniques). Krishnamurthy et. al
discuss an approach for Regression Test Case prioritization
using Genetic Algorithms [11]. Daengdez et.al discuss various
prioritization approaches [12]. Jiang et. al discuss Adaptive
Random Test Case Prioritization Techniques [13].

III. PROPOSED APPROACH

Now we focus our attention on the approach we have
proposed for the prioritization of test cases. In our approach
we basically suggest a prioritization level for the test cases.
The major elements actively involved playing a role in
determining the prioritization level of the test cases are as
follows:

 The SRS document
 The experts having an in depth experience in

developing a particular category of projects say a
banking project.

 The software developers.

In our approach the first step we do is to identify project
independent generic parameters for testing which we need to
develop the test cases. Each such parameter may have more
than one test case which would be needed to be executed so as
to successfully test that the given parameter component of the
project is running is functioning without any latent errors. We
categorize these parameters into three broad categories:

 GUI or the Graphical User Interface Parameters
 Database Parameters
 Networking Parameters

Under each category of the aforementioned parameters

we have a number of identified parameters as well. We enlist
these parameters as follows:

GUI Parameters:

Arup Abhinna Acharya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1054-1060

1056

 Degree of using intuitive command names
 Speed of use/Productivity support
 Degree of intellisense support
 In case of event triggered activities degree of

confirmation of the events in the software
 Feedback from the system showing system status in

case of complex event triggering
 Flexibility of help (online/ offline)
 Degree of error recovery
 The extent of jargon free error messages to be

displayed
 Overuse or underuse of modal dialogs
 If there is a sequence of modal dialogs being used in

response to an event
 Degree of mapping between use case and User

Interface design
 User flexibility in terms of hybrid use of Command

Line Interfaces, Iconic and Graphical User Interfaces.
 Degree of mapping in case of use case and UI design
 Use of primitive or highly composite commands in

case of the software deploying command line
interface (CLI).

 Degree of component based nature of the software.

Database Parameters:

 The equivalence of a schedule to a serial schedule in
case view serializability/conflict serializability is
followed.

 Access time from interface
 The degree of successful recovery of the database

from the backup.
 Speedup or scaleup in case of parallel database and

to increase the speedup
 Level of normalization
 Degree of successful recovery in case of recoverable

schedule being followed.
 Degree of effectiveness of data accessibility in case

of Distributed Database System is being used for the
application

 Level of security to the database of the application

Networking Parameters:

 Level of network security
 Efficiency of the physical topology being used
 Reliability of the communication channel
 Time of communication
 Efficiency of the Network model being deployed

Any given project is not limited only to these set of

identified parameters. There may be some extra identified
parameters which may be added on by the development team
during the course of requirement analysis. Also a project may
not be using all of the above identified parameters. We present
below a block diagram communicating our overall idea.

Fig. 1 Phase 1 of our proposed model

Fig. 2 Phase 2 of our proposed model

Arup Abhinna Acharya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1054-1060

1057

The above represented diagram conveys the information,
that we identify a particular category of project at first. The
category of project may be for example say a banking project,
a satellite launching project or say a credit card development
project, etc.

Let us take for example that Project Category i
corresponds to the banking project. The banking projects P1 to
Pn for various banks may be developed by one or many
organizations. For each of these projects we populate a table
having three columns (Parameters identified, Required Value
indicating the customer requirement/ system requirement on a
six scale basis, Extent of achievement indicating the extent of
achievement of the requirement at the first instance of
development of the project). We collect such data from P1 to
Pn projects and finally come up with PSBT which stands for
Project Specific Base Table as the outcome of the first phase
of Prioritization. The PSBT has got the same structure as that
of the tables for individual projects. For each parameter we
collect the values from the tables P1 to Pn corresponding to
each column and find their arithmetic mean. The PSBT is
populated with the arithmetic mean (calculated from the tables
P1 to Pn) against each parameter.
 n
 Value (i,j) = (∑ Pi) / n (1)
 i=1
where, i is the row corresponding to a particular parameter , j
corresponds to one of the last two columns of the PSBT and n
is the number of the historical tables we have.
Supposing that a parameter identified is not relevant to the
given category of project the value in each of the columns
against the parameter would be assigned as zero. As already
mentioned the list of identified parameters is an illustrative list
and each of the identified parameter lists are subject to further
addition of parameters. The parameters we have identified are
very generic to almost all the category of projects and are
likely to be used in almost all the category of projects.

Given a project P1 falling under a particular category say
Category X, it is the combined duty of the system analyst and
the experienced developers to use their expertise in analyzing
the customer requirements and assigning a value based on a 6
scale basis under the Required Value column against each
parameter prior to the development of the project. There is a
likelihood that the identified parameters are too technical to be
specified by the customer or the prospective user of the
software. Or in other words if there exists any such parameter
which is so system specific that it is to be taken care of by the
developer developing the system then in that case the
developer will take the responsibility of assigning the values
against the parameter in question. Similarly the developers,
test engineers, system analysts have to go for a combined
effort in populating the Extent of achievement column with a
value on a 6 scale basis denoting the level to which the
incorporation of the requirement denoted by the parameter has
been satisfied in the first instance just after the completion of
the project i.e. if after the initial system testing it is found that
a parameter P having the level of requirement 4 has been rated
as 3.5 as the satisfaction level then 3.5 is the value to be

considered. A similar methodology is to be used for
populating all the tables P2 to Pn falling under the Category X.
Finally we come up with the PSBT as the outcome of the first
phase where the values in the PSBT are generated as per (1).
The PSBT is common for a given category of project. In the
second phase when a new project Pn+1 comes up we also come
up with a table having three columns namely the identified
parameters, the rating value assigned by the expert against the
parameter on a 6 scale basis and the prioritization level of the
test case for the parameter (which is initially not populated but
using a mapping algorithm we populate the column taking
into account the Project Specific Base Table or PSBT). Thus
we propose the concept of using historical data for a particular
category of project available in the form of PSBT in assigning
priority values to the test cases in a new project falling in the
same category of project. The mapping algorithm we talk of
uses the concept of simple mathematics as an aid in assigning
priority values. Now we focus our attention on the algorithm
devised to achieve the objective.
We achieve our objective in two phases:

 In Phase 1 we go for constructing the PSBT
 In phase 2 we go for constructing two Intermediate

Tables followed by final assignment of priority levels
At the first instance we go for populating the Required Value
and the Extent of Achievement columns of all the tables P1 to
Pn belonging to the same category of the project. We now
present a small algorithm for populating the PSBT with values
based on (1).

Algorithm Construct PSBT
Input: Tables P1 to Pn
Output: PSBT

1. For every column j

1.1. For every parameter k
1.1.1. For every table n

1.1.1.1. Assign value of parameter k to x
1.1.1.2. sum=sum+x

1.1.2. End For
1.1.3. val= sum/n
1.1.4. Assign column j of parameter k of PSBT with

the value val
1.2. End For

2. End For

After this we enter into phase 2 of our method. This involves
the construction of two tables namely Intermediate Table 1
and Intermediate Table 2. The schema for Intermediate Table
1 is <Parameters, Extent of Achievement, New Requirement,
Extent of Level of Satisfaction> and that for Intermediate
Table 2 is <Parameters, Modified Level of Satisfaction>

In the Intermediate Table 1 Parameters column enlists the list
of identified parameters, Extent of Achievement column takes
the values from the corresponding column of PSBT, New
Requirement takes values from the Level of Requirement
column of the new project Pn+1, Expected Level of
Satisfaction is the level to which the functionality of the

Arup Abhinna Acharya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1054-1060

1058

identified parameter must be satisfied in the new Project. For
example if for parameter X the Expected Level of Satisfaction
of Intermediate Table 1/ Modified Expected Level of
Satisfaction of Intermediate Table 2 has the value 3, it implies
that the Expected Level/ Modified Expected Level must be
strictly greater than 3. Intermediate Table 2 has got two
columns namely Parameters enlisting the list of identified
parameters and Modified Expected Level of Satisfaction
which is calculated from the New Requirement column of
Intermediate Table 1. We now present the algorithm for
constructing Intermediate Table 1.

Algorithm Construct Intermediate Table 1
Input: PSBT
Output: Intermediate Table 1

1. Take the LCM of the Requirement column of PSBT
2. For every parameter n of PSBT

2.1. Calculate factor = LCM / value of requirement
column of PSBT

2.2. Multiply Extent of Achievement by factor
2.3. Collect the new requirement value from table Pn+1

corresponding to parameter n
2.4. Multiply the value collected in 2.3 with factor.
2.5. Assign the values collected in 2.2 and 2.4 in the

Extent of Achievement and New Requirement
Column respectively.

2.6. Calculate Expected Level of Satisfaction by the
formula
(LCM / value of level of satisfaction column) *
New Requirement.

3. End For

Algorithm Construct Intermediate Table 2
Input: Intermediate Table 1
Output: Intermediate Table 2

1. Take the LCM of the New Requirement column of

Intermediate Table 1
2. For every parameter n

2.1. Calculate factor = LCM / New Requirement Value
Collected from Intermediate Table 1

2.2. Multiply value of Expected Level of Requirement
with factor to get Modified Expected Level of
Satisfaction

3. End For

Algorithm Assign Priority
Input: Intermediate Table 2
Output: Final Table for Project Pn+1

1. Arrange the values of Modified Expected Level of

Satisfaction in ascending order tracking the
corresponding parameter.

2. Assign highest priority to the parameter having the lowest
value of Modified Expected Level of Satisfaction.

Our reason of assigning highest priority to the parameter
having the lowest value of Modified Expected Level of
Satisfaction can be understood with a small illustration. Let’s
say we have the LCM of the New Requirement column of
Intermediate Table 1 as 20 and Intermediate Table 2 as:

Intermediate Table 2 with dummy values

PARAMETERS MODIFIED EXPECTED

LEVEL OF SATISFACTION
X 12.5
Y 13.5
Z 10.0

We know from previous discussion that the values in the
Modified Expected Level of Satisfaction column indicate that
the level of satisfaction has to be strictly greater than the
specified values. Thus if our LCM of the New Requirement
column of Intermediate Table 1 is 20, since Modified
Expected Level of Satisfaction is calculated keeping 20 as the
base value we may infer that for Parameter X we need to
implement the functionality in such a way so that our expected
level goes above 12.5. Similar is the inference for the
parameters Y and Z. Thus we need to do more work so as to
achieve an expected level more than 10 than achieving an
expected level more than 12.5 say. Although we must achieve
more than the expected level of satisfaction for all the
parameters enlisted, still increasing the target of achievement
from 10 to a value lying in the close proximity of 20 should be
given a higher priority than increasing the target of
achievement from 13.5 to a value lying in the close proximity
of 20. Thus we must execute the test case for Parameter Z
followed by that of Parameter X and finally Parameter Y
needs to be tested to find out their level of satisfaction. We
believe that the satisfaction of the functionality of every
parameter to a very close proximity of the required level is
important for ensuring a high customer satisfaction.

IV. CONCLUSION

It has been already discussed how important is
Prioritization of the test cases. In our approach we have relied
on simple mathematics where we treat the satisfaction of
every parameter equally important without discriminating
between the parameters as we believe that to ensure the
delivery of highly satisfactory software we need to take equal
care of all the parameters. We were also theoretically able to
justify our algorithm from the small illustration presented
above. Our method studies the historical data of the projects
falling under a particular category and attempts to
mathematically utilize the data in aiding for assignment of
prioritization level to the parameters of the new project at
hand.

Arup Abhinna Acharya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1054-1060

1059

REFERENCES
[1] Pressman Roger S. , Software Engineering A Practitioners’ Approach.
[2] K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma. Regression

testing in an industrial environment. Comm. Of the ACM, 41(5):81–86,
May 1988.

[3] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case
prioritization: A family of empirical studies”, IEEE Transactions on
Software Engineering, 28(2), 2002 , pp.159–182.

[4] S. Elbaum, A. Malishevsky, and G. Rothermel, "Test Case
Prioritization: A Family of Empirical Studies," IEEE Transactions on
Software Engineering, vol. 28, pp. 159-182, February, 2002.

[5] G. Rothermel, R. Untch, C. Chu, and M. Harrold, "Test Case
Prioritization," IEEE Transactions on Software Engineering, vol. 27,
pp. 929-948, October, 2001

[6] G. Rothermel, R. Untch, C. Chu, and M. Harrold, "Test Case
Prioritization: An Empirical Study," International Conference on
Software Maintenance, Oxford, UK, pp. 179 - 188, September 1999.

[7] S. Elbaum, A. Malishevsky, and G. Rothermel, "Prioritizing Test Cases
for Regression Testing," Proceedings of the ACM International
Symposium on Software Testing and Analysis, vol. 25, pp. 102-112,
August 2000.

[8] O. Gotel and A. Finkelstein, "An Analysis of the Requirements
Traceability Problem," International Conference Requirements
Engineering, pp. 94-101, 1994.

[9] R. Balasubramaniam and M. Jarke, "Toward Reference Models for
Requirements Traceability," IEEE Transactions on Software
Engineering, vol. 27, pp. 58-93, January 2001.

[10] L. Tahat, B. Vaysburg, B. Korel, and A. Bader, "Requirement-Based
Automated Black-Box Test Generation," 25th Annual International
Computer Software and Applications Conference, Chicago, Illinois, pp.
489-495, 2001.

[11] R. Krishnamurthy, S.A. Sahaya Arul Mary, “Regression Test Suite
Prioritization using Genetic Algorithms”, International Journal of
Hybrid Information Technology, Vol.2, No. 3, July 2009.

[12] S. Roongruangsuwan, J. Daengdej, “Test Case Prioritization
Techniques”, Journal of Theoretical and Applied Information
Technology, Vol. 18, No.2, pp. 45-60, 2010

[13] Bo Jiang, Zhenyu Zhang, W K Chan, T H Tse, “Adaptive Random Test
Case Prioritization”, Automated Software Engineering (2009)

Arup Abhinna Acharya et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (3) , 2011, 1054-1060

1060

